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Search for Dark matter
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History

e CDMS: Cryogenic Dark Matter
Search
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 CDMSI
— 1998 to 2002

— Located at Stanford
Underground Facility
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Cross—section [cm”] (normalized to the nucleon)
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— 6 detectors, 1kg Ge detector
mass
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CDMS I

2003-2009

Located at Soudan Underground Laboratory in Minnesota
30 detectors, ~6kg Ge detector mass

Set the most sensitive limits on DM at the time
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SuperCDMS Soudan

2009-2014
Soudan underground laboratory
15 detectors, 9kg Ge detector mass
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Super CDMS SNOLAB

* Currently in R&D phase
* Plan to begin operation in 2020
* Located 2km underground at SNOLAB in Sudbury, Canada

Image from [8]

Vacuum bulkhead for signals
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Detector Tower
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Why cryogenic temperatures?

* Two reasons

— Thermal noise

— Energy resolution
 Thermal noise goes like

oo VT

* Energy resolution is thus

AFE = \/kgT2C

» Detectors are operated at
~15-30mK

* For materials that obey
Debye’s law,

C oc MT?

* Which makes energy
resolution:

AE oc VMT®



Detectors

Image from [9]
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Two types of detectors, iZIP and HV

1ZIP HV
Ge Si Ge Si
Number of detectors 10 2 & 4

Total exposure (kg-yr) 56 4.8 44 9.6
Phonon resolution (¢V) 50 25 10 5
Ionization resolution (eV) 100 110 - -
Voltage Bias (V) 6 & 100 100

Table from [6]
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IZIP

* interleaved Z-dependent lonization and Phonon

* Sensors mounted on top and bottom of either Ge or Si crystal
* Optimized for both lonization and Phonon collection

* Most sensitive to >5GeV mass DM

Image from [5]

Image from [6]
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Electron Recoil rejection

efficient at producing charge Electron recoil (ER) Nuclear recoil (NR)
carriers

Phonon production for NR
and ER events are nearly
identical

Phonon signal

Typically ~1/3 the ionization
of equivalent ER

Charge signal

N L

Image from [8]




Electron Recoil rejection
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Surface Rejection

5-10V bias on ionization channels, phonon channels are grounded
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Electron Recoil rejection

After Symmetry cut is made
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Charge Amplification

* Charge amplification is handled by BJT based feedback amp with High-
Impedance JFET preamp front end

* JFET located at 4K stage, but must be heated to ~150K to operate
 Main amplification is done at room temp, then fed back to 4K stage
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— Image from [1]



Integrated charge in proportional to number of electron hole pairs
produced in event

In Ge it takes ~3eV of recoil energy to produce electron-hole pair, the
charge can be converted to energy

The energy resolution of the amp is determined by

fnr —1"'2

3-0; 3 " y? .
op=— =" 4/62 df (in eVee),

n,total

In SuperCDMS Soudan, typical resolution is about 460eVee, where as new
amps tested at Berkeley have been shown to be about 250eVee



HEMT Amplification

High Electron Mobility Transistors
Operate at cryogenic temperatures

Dissipate about 100 microWatts vs typical JFET with 5mW

Significantly lower noise than JFET
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Image from [1]
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Two designs were tested
— Modifying the original JFET amplifier by replacing
the front end with HEMT
— Completely cryogenic HEMT based amplifier

Modified FET amp was shown to match performance
of original amp, but with lower power usage

Completely cryogenic HEMT amp has significant
increase in noise performance

C. Fink 290E

750 mv  1.25V
(1mA) (0.2 mA)
@)

25002
Input

Image from [2]

21



Leakage current Charge resolution (eV)

(10715 A) HEMT Amp. CHEMT Amp. (best HEMT) CDMS JFET Amp.
<4 106 87 228

10 110 92 229

100 126 110 231

Table and plot from [2]
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How to detect phonons?

* In scattering event, interaction results in production of charge carriers
(electron-hole pairs) and athermal phonons

* |f detected before they thermalize, they can provide spatial reconstruction

* Athermal phonons are detected via QETs (Quasiparticle-trap-assisted
Electrothermal-feedback Transition edge sensors)

Image from [1]

ink 290E 23



Superconducting film biased at
transition between normal and

superconducting

Must be voltage biased to stay in

transition region

— Increase in temperature
increases resistance

— Increase in resistance
decreases the Joule heating

(VA2/R)

— Decrease in Joule heating
leads to decrease in

temperature
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Luke-Neganov Phonons

* When charge carriers are drifted across the crystal, the carriers themselves
produce phonons

* Luke phonons can obscure the measurement of the primary phonons

AV
Ephonon — Erecoil (1 | d )

€




HV detector

“High Voltage”
Dual layer single channel detector

Same material and overall shape as iZIP, but layout is optimized for phonon
collection

Most sensitive to 1-5GeV mass DM
Takes advantage of Luke-Neganov phonons

Image from [6]
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Luke-Neganov Amplification

Measure ionization via phonons rather than charge

Drift electron hole pairs across negative bias, measure heat dissipated
during process

By increasing the bais resistance, the number of Luke phonons created
increases, yet the electronic noise of the phonon readout electronics
remains unchanged

This comes at the cost of event-by-event background reduction



* Forlarge enough bias voltage, Energy resolution will go like

AE%e—%

€

* Thus, for a bias of about 100 volts, this should allow for detection of single
electron hole pair



WIMP-nucleon cross section [ecm?]
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